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Joint Video Frame Set Division and Low-Rank
Decomposition for Background Subtraction
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Abstract— The recently proposed robust principle component
analysis (RPCA) has been successfully applied in background
subtraction. However, low-rank decomposition makes sense on
the condition that the foreground pixels (sparsity patterns) are
uniformly located at the scene, which is not realistic in real-
world applications. To overcome this limitation, we reconstruct
the input video frames and aim to make the foreground pixels
not only sparse in space but also sparse in time. Therefore,
we propose a joint video frame set division and RPCA-based
method for background subtraction. In addition, we use the
motion as a priori knowledge which has not been considered in the
current subspace-based methods. The proposed method consists
of two phases. In the first phase, we propose a lower bound-
based within-class maximum division method to divide the video
frame set into several subsets. In this way, the successive frames
are assigned to different subsets in which the foregrounds are
located at the scene randomly. In the second phase, we augment
each subset using the frames with a small quantity of motion.
To evaluate the proposed method, the experiments are conducted
on real-world and public datasets. The comparisons with the
state-of-the-art background subtraction methods validate the
superiority of our method.

Index Terms— Background subtraction, low-rank decomposi-
tion, motion priori knowledge, within-class maximum division.
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I. INTRODUCTION

FOR numerous computer vision tasks, such as indoor
surveillance [1], anomaly detection [2], sports video

analysis [3], traffic surveillance [4], and so on, background
subtraction has been a fundamental step to segment out the
motion objects for high-level vision understanding. Usually,
the scene suffers from various influence including lighting
changes and dynamic backgrounds. Owing to the complex
environment and real-time requirement of the surveillance
system, many methods [1], [6]–[9] have been proposed to
overcome the aforementioned problems. These state-of-the-
art methods work well under certain conditions. However, it
is not easy to handle all the mentioned problems by using
a single method. Generally speaking, background subtraction
methods can be classified into three categories: statistic-based
methods [5]–[13], classification-based methods [14], [15], and
subspace-based methods [1], [16]–[24].

The Gaussian background modeling [5] is a classical
statistic-based method and is very popular in the surveil-
lance system. Later researches extended this model to the
multi-Gaussian versions [6]–[9] for background subtraction.
As these methods are of the parametric-based type whose
parameters are hard to learn and adjust under complex environ-
ments, [10] and [11] preferred the nonparametric methods for
background pixel modeling. However, these methods cannot
deal with the continuous changing situations well. Unlike
the background subtraction method at the pixel level, [12]
and [13] modeled the background at the region level. The
region-based method is capable of handling noise, illumination
variations, and dynamic environment. Because background
subtraction can be viewed as a classification problem, neural
network [14] and support vector machines [15] are also
exploited for foreground detection. For these methods, a
learning procedure is necessary before the detection stage.
They show a good adaptation to the learned situations. How-
ever, they are not flexible to the new cases that had not
been considered in the learning stage. Recent researches on
subspace analysis consider that the background lies in a low
dimensional subspace, that is, eigenspaces. Such eigenspaces
enable the algorithms to resist a variety of contamination.
Tsai and Lai [1] assumed that the background and foreground
are two independent signals and extracted the foreground by
independent component analysis. Cevher et al. [16] proposed
to use compressive sensing to recover the region of interest.
However, the theory requires that the foreground occupies
a small portion of the scene. Early in 2000, the classical
principal component analysis (PCA) had been used in back-
ground modeling [17]. But it is vulnerable when the data is
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contaminated by noise. Later, De la Torre and Black [18]
extended classical PCA to develop the robust principal
component analysis with M-estimation (RPCA-ME), which
is more adaptive to noise corruption, alignment errors,
and occlusion. Unlike RPCA-ME, the robust principal
component analysis (RPCA) model proposed in [19] treats
background subtraction as a matrix decomposition problem
and is able to recover the low-rank and sparse components of
a data matrix even though a quantity of entries of the matrix
are contaminated with arbitrary noise intensity.

For a measurement matrix M ∈ �n1×n2 with partial missing
entries or being contaminated by noise, there exist many
realistic applications that need to recover its original signal and
the corresponding noise signal. In other words, we are required
to obtain the decomposition M = L0 + S0, where L0 is a
low-rank matrix, S0 is a sparse matrix, and both components
are allowed to have random intensity.

Let σi (M) be the i th singular value of M , and let
||M||∗ := ∑

i σi (M) and ||M||1 = ∑
i j |Mij | denote the

kernel norm and l1 norm of matrix M , respectively. Then
under rather weak assumption, RPCA is able to accurately
recover low-rank matrix L0 and sparse matrix S0 by solving
the mathematical model

minimize||L||∗ + λ||S||1
s. t. L + S = M. (1)

In the application of background subtraction, the fore-
ground and background in each frame are referred to the
sparse and low-rank components of RPCA model. As intro-
duced in [19]–[24], RPCA has given a promising result in
background subtraction. The online version of RPCA pro-
posed by Qiu and Vaswani [20] enables the subspace-based
background subtraction to be in real time. Mu et al. [21]
exploited the random projection and SVD to accelerate the
calculation efficiency with controllable loss of the perfor-
mance. Bao et al. [22] proposed an inductive RPCA to handle
gross corruptions and new data efficiently. Ding et al. [23]
combined a Bayesian framework with RPCA to broaden the
adaptation of the algorithm in a wide range of noise levels.
Zhou and Tao [24] proposed a Go Decomposition model and
used a bilateral random projection technique to acquire the
low-rank and sparse components as well as noise.

It should be noted that the RPCA model makes sense under
two assumptions:

1) the genuine signal L0 is of low-rank but not sparse;
2) the sparsity patterns should be uniformly distributed

in the sparse matrix at random [19].

However, such assumptions may not be fully satisfied in
real-world applications. With these reasons, in background
subtraction, RPCA still has its own shortcomings. First, it
requires the moving objects are uniformly located at random. It
fails to detect the objects if they are always located at a limited
region of the scene. Second, it does not make use of the motion
message. For example, we find out that RPCA is not effective
for the rush-hour sequence as shown in Fig. 1(d). Obviously,
the rush-hour sequence is full of noise (namely the foreground)
that largely decreases the quality of recovering the low-rank

Fig. 1. Results on a rush-hour sequence. (a) Frame from Pets 2006 s7.
(b) and (c) Low-rank and sparse components of RPCA. (d) Binary image
of (c). (e) and (f) Low-rank and sparse components of the proposed method.
(g) Binary image of (f).

Fig. 2. Statistical distribution of the pixel values of the sequence used
in Fig. 1. (a) Statistical distribution of the pixel values. Group one is the
statistics of the number of the pixel values from the frame subset obtained by
our method. (b) Statistical distribution of the same pixel values by using our
augmented method. The augmented group is the statistics of the number of
the pixel values from the augmented set obtained by the method in Section V.

and sparse components. Considering the values of a pixel on
this sequence, we run all the frames and obtain the statistical
distribution of the pixel values [Fig. 2(a)]. The values around
100 give a good estimation of this pixel. However, the values
that are far away from 100 come from the moving objects and
have side effect on the low-rank decomposition. Our question
is: can we make use of the motion message and change the
value distribution of the pixel to the one shown in Fig. 2(b)?
If it works, it would be much easier and more effective to
recover the low-rank and sparse components.

In this paper, unlike RPCA that processes the whole
sequence for signal recovery, we take advantage of the motion
message and devise a new framework to divide the video
frames into several groups. In each group, the statistical
distribution of pixel values is supposed to be contaminated
by less noise than ever before. The idea of the frame set
division and frame set augmentation reduces the motion in
each subset and provides more genuine background pixels,
which facilitates RPCA to obtain better low-rank and sparse
components. First, we estimate the position of the moving
objects and ratio of the foreground pixel to all the pixels
in each frame by using a simple background subtraction
technique. Second, we propose a lower bound-based within-
class maximum division (LBWCMD) method to divide the
video frame set into several subsets on the basis of the position
information. Third, the frames will be ranked in ascending
order according to the ratio of the foreground pixel to all the
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TABLE I

VARIABLES OF OUR METHOD

pixels and the top several frames will be added in each frame
subset to construct the groups. Our results on the rush-hour
image are shown in Fig. 1(e)–(g). More results are shown in
Section VII. To summarize, our contributions are as follows.

1) We make use of the motion priori knowledge and join
the video frame set division and low-rank decomposi-
tion for background subtraction. The frame set division
is beneficial to the recovery of low-rank and sparse
components.

2) A new method called LBWCMD is introduced to recon-
struct the video frame set to obtain several subsets.
The proposed method assigns the successive frames to
different subsets as much as possible so that the low-
rank decomposition is conducted on each frame subset
with less motion. In fact, as shown in Fig. 1(c) and (d),
matrix M constructed by all the frames with highly
dense motion is not good for low-rank decomposition.

3) We propose a framework to accomplish the background
subtraction with frame set division and low-rank decom-
position. The framework will be stated in detail in the
following sections.

The remainder of the paper is organized as follows.
Section II gives an overview of the proposed problem and our
solution. Section III shows the estimation of priori motion
information. Section IV presents the proposed LBWCMD
method in detail. Section V illustrates the augmented set con-
struction (ASC) and shows the implementation of the whole
framework. Section VI discusses the parameter tuning. The
experimental results are described in Section VII. We make a
conclusion of this paper in Section VIII.

II. METHOD OVERVIEW

A. Problem Statement

The variables used in this problem are shown in Table I.
For RPCA-based background subtraction [19], [21], [23], the
authors stacked all video frames as column vectors one by
one into matrix M . Then a low-rank decomposition algorithm
is performed to recover the low-rank and sparse components
[see the flow chart in Fig. 3(a)]. It should be noted that, the
highly dense motion appears in a local region has a great
impact on the recovery results. It is hard to extract good low-
rank and sparse components in such a situation. Therefore, a
promising idea is to assign the successive frames to different
frame subsets to alleviate such a phenomenon. Our problem is
as follows. For a frame set � with |�| = n, whether there is a
finite division to �, namely � =⋃

i=1,2,...,m Xi , when RPCA
is applied on Xi (i = 1, 2, . . . , m), the recovery of the low-
rank and sparse components is better than that of the low-rank

Fig. 3. Flow charts of RPCA and the proposed framework for background
subtraction. (a) Flow chart of RPCA for background subtraction. (b) Flow
chart of the proposed framework for background subtraction.

and sparse components decomposed from the frame set �. If it
exists, how to obtain such a division?

B. Proposed Method

The theoretical finding in [19] pointed out that low-rank
decomposition makes sense on the condition that the sparsity
patterns are uniformly distributed in the sparse matrix at
random [19]. However, realistic situations may not satisfy this
condition. Therefore, when we divide a video frame set, our
division principle is to let the moving objects be uniformly
located at random in each subset. This is what the proposed
LBWCMD (in Section IV) does to satisfy the aforementioned
condition. It should be noted that if successive frames are
assigned to the same subset, the sparsity patterns will be
restricted in a limited region of the scene which is not good for
low-rank decomposition. To this end, successive frames should
be assigned to different subsets. Let us study the following
division scheme: � = ⋃

i=1,2,...,m Pi , Pi
⋂

Pj = ∅, i �= j
and each element in Pi is selected from � by using LBWCMD
method. Pi can be regarded as division set. However, the scale
of Pi is too small for running RPCA. We propose to make
use of the motion priori knowledge to devise a new division
scheme to make up such a deficiency [Fig. 3(b)]. First, we
divide � into division set Pi and nonmotion set Qi , namely
� = ⋃

i=1,2,...,m Pi
⋃

i=1,2,...,m Qi where Pi consists of the
frames with motion and Qi consists of the frames with no
motion. Pi and Qi can produce a basic set Xi = Pi

⋃
Qi .

Then, we extract the frames with slight motion in � to
obtain the augmented set Yi , where the elements in Yi are
not included in Xi . Finally, the basic set and the augmented
set collaborate together to construct group set Zi = Xi

⋃
Yi .

RPCA will be performed on the group sets to run the recovery
task. The division set Pi will be obtained by LBWCMD.
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Fig. 4. Centroids of the largest foreground region. (a) Largest foreground
region in successive frames. (b) Projections of the centroids on a plane.

Nonmotion set Qi and augmented set Yi will be obtained using
the methods in Section III and V, respectively.

III. ESTIMATION OF PRIORI MOTION INFORMATION

The motion in the video has a great influence on the quality
of low-rank decomposition. For the whole sequence, if the
moving objects appear in a local region of the scene, then
according to our analysis as described in Section II-B, the
low-rank decomposition results will not be good. Thus, we
use a new designed strategy to scatter the successive frames to
different subsets. Before the division tasks, we need to evaluate
the motion priori knowledge in advance. In this section, we
estimate and use the ratio of the moving area and the centroids
of the objects. To this end, a simple background subtraction
technique [5] is used to extract the moving information.

We take the centroid of the largest foreground block in each
frame as a division criterion. The reasons are as follows.

1) The largest block in the foreground reflects the major
movement in a frame. Fig. 4(b) shows the projection of
all the centroids of the largest foregrounds in a plane.
It gives a clear picture of the motion distribution.

2) The utilization of the centroid of the largest foreground
block can accelerate data processing.

3) Adjacent centroids can reveal the continuous movement
of the object along the time axis, as the positions of an
object in successive frames are normally the nearest.

By performing the simple background subtraction
method [5], we can obtain a coarse motion estimation.
Fig. 4(a) shows that the foreground images are in alignment
along the time axis. Both the green area and white area
are the foregrounds in each frame, whereas the green part
is the largest foreground block. The centroid of the largest
foreground block can be viewed as a representation of the
foreground. It roughly reflects the motion distribution of a
video sequence [Fig. 4(b)]. We summarize the procedure of
the motion priori knowledge estimation as follows.

For n video frames I (k) ∈ N
h×w, (k = 1, 2, . . . , n), let

B(k), F (k) be the corresponding background and foreground.
Let α ∈ (0, 1) be a weight coefficient.

First, we obtain the foreground of the kth frame using

F (k) = |I (k) − B(k−1)| (2)

and thresh the foreground into binary image FG using

FG(x, y) =
{

255 F (k)(x, y) > T

0 F (k)(x, y) ≤ T
(3)

where T is a predefined threshold. Update the corresponding
background using

B(k) = α I (k) + (1− α)Bk−1. (4)

Then we find the largest foreground block through optimizing

S = arg max
F A j

Area(F A j ) (5)

where FA j is the j th foreground block of FG and Area(x) is
the total number of nonzero pixels in x . Calculate the center
of S to obtain

c =
(∑

x S(p, q)
∑

S(p, q)
,

∑
yS(p, q)

∑
S(p, q)

)

(6)

and update the centroid set, namely

�(k) = �(k−1)
⋃
{c}. (7)

Finally, we obtain the centroid set �∗ as soon as we go through
n video frames.

The basic set Xi (i = 1, 2, . . . , m) consists of the division
set Pi and nonmotion set Qi . The nonmotion set Qi is easily
obtained and it is used for reducing the ratio of contamination
in the frame set. The reason for using the division set Pi is
to scatter the successive frames as much as possible. We will
discuss how to obtain Pi in the next section.

IV. LBWCMD METHOD

A. Model of Frame Set Division

To alleviate the influence of the motion on low-rank decom-
position, we consider to reconstruct the frame set � to obtain
the group sets Zi (i = 1, 2, . . . , m) where � =⋃

i=1,2,...,m Zi .
As mentioned in Section II-B, the division set Pi constitutes
an important part of the group set Zi . As the centroid set � of
the video has been obtained, we divide the frames to acquire
the division set Pi according to the locations of the centroids.
To this end, the following two facts should be considered.

1) The successive frames with motion should be assigned
to different subsets as much as possible.

2) The spatial distribution of the centroid set of each frame
subset should be consistent with the spatial distribution
of the centroid set of �.

The former tries to apportion the recovery work to each
subset, and the latter guarantees the centroids in each subset
come from the whole scene, not a local region of the scene.
To start with, we list the variables used in the following models
in Table II.

To model the first fact, we use a strategy U to divide the
frame set � and we have � = ⋃

k=1,2,...,m �k , �k
⋂

�l =
∅(k �= l). Then, a probability optimization is used to describe
the problem [see the mathematical model (8)]. In other words,
Uopt should maximize the combinational probability of AU

ip
and AU

jq, namely the probability of successive frames being
assigned to different subsets. For our problem, we constrain
δ to a small value so as to control the distribution manner
of the successive frames. If we set δ = 1, it means the
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TABLE II

VARIABLES OF THE PROPOSED MODELS

successive frames will be assigned to different subsets as much
as possible

Uopt = arg max
U

∑

i �= j
i, j∈{1,2,...,n}

P(AU
ip,AU

jq, p �=q
⏐
⏐|i− j |≤δ). (8)

To model the second fact, not only the local similarity but
also the global similarity between the spatial distributions of
the centroid set 	 and ϒk needs to be considered. There-
fore, we put forward that the following two goals should be
achieved as much as possible.

1) The convex hull H U
ϒk

of the centroid set ϒk should
occupy almost the same space as the convex hull H	

of the centroid set 	.
2) The density of the centroid set ϒk should be almost the

same as the density of the centroid set 	.

For the first goal, our model is as follows. Let 	 =
{xi , i = 1, 2, . . . , n} be the centroid set of �. With divi-
sion U , the centroid set 	 is divided into m subsets ϒk =
{ykj , j = 1, 2, . . . , nk}(k = 1, 2, . . . , m), that is, 	 =⋃

k=1,2,...,m ϒk , ϒk
⋂

ϒt = ∅(k �= t),
∑m

k=1 nk = n. The
convex hulls of 	 and its subset ϒk are

H	 =
{ n∑

i=1

ηi xi |xi ∈ 	,

n∑

i=1

ηi = 1, ηi ∈ [0, 1]
}

, (9)

and

H U
ϒk
=

{ nk∑

j=1

ξ j ykj |ykj ∈ ϒk ,

nk∑

j=1

ξ j = 1, ξ j ∈ [0, 1]
}

. (10)

Therefore, the first goal proposed for the second fact seeks the
following optimization:

Uopt = arg max
U

m∑

k=1

|H	
⋂

H U
ϒk
|

|H	| . (11)

Thus, Uopt should maximize the intersection of H	 and
H U

ϒk
. However, (11) only measures a global property of the

similarity between the centroid sets.
Our second goal serves as a complementary of the problem.

Because ϒk is a subset of 	, we can find the centroids
which simultaneous belong to 	 and ϒk . Therefore, we have
x ′j = ykj , x ′j ∈ 	( j = 1, 2, . . . , nk). In 	, we center a ball
with radius r on x ′j , the number of the centroids in this ball

are regarded as NU
(x ′j ,r)

. Similarly, in ϒk , the number of

the centroids in the ball centered at ykj with radius r is
NU

(ykj ,r)
. The second goal pursuits that the ratio NU

(x ′j ,r)
/|	|

should be approximately equal to the ratio NU
(ykj ,r)

/|ϒk | as
much as possible. Therefore, the second goal tries to optimize
the mathematical problem

Uopt = arg min
U

m∑

k=1

nk∑

j=1

⏐
⏐NU

(x ′j ,r)
/|	| − NU

(ykj ,r)
/|ϒk |

⏐
⏐. (12)

Though the total number of elements in ϒk is smaller than
that in 	, the difference between the ratios can be as small as
possible.

We incorporate global and local measurements into the same
objective function. Then the mathematical model of the second
fact is

Uopt = arg min
U

m∑

k=1

nk∑

j=1

⏐
⏐NU

(x ′j ,r)
/|	|−NU

(ykj ,r)
/|ϒk |

⏐
⏐

m∑

k=1
|H	

⋂
H U

ϒk
|/|H	|

. (13)

The objective functions of (8) and (13) are difficult to
optimize directly. However, this problem can be regarded as an
optimization problem of the discrete centroids. Therefore, it is
of importance to evaluate the relations between the centroids
of a subset and the relations between the centroids of different
subsets.

B. Proposed Solution—LBWCMD

With the two facts we have mentioned, actually our problem
is to maximize the distances between the centroids in a subset
and minimize the distances between the centroids in different
subsets. This problem is quite different from the clustering
problems [26] we have seen commonly. In this paper, we
propose a lower bound-based measurement to describe the
distance between the two centroids from the same subset
or different subsets so as to obtain a reasonable solution of
the problem. For the well-known k-mean method [26], to
accomplish the clustering task, it needs to answer the following
two questions after the initialization: 1) which sample in
the class should be removed and 2) which class should the
removed sample be added to? Follow the same procedures as
k-mean but rather different intrinsic principles, we demonstrate
the proposed method as follows. First, we initialize m subsets
of the centroid set 	. Then, for the centroids in a subset,
we have to tackle with the following two problems: 1) which
centroid should be the candidate that has to be transferred
to another subset and 2) which subset should the centroid be
assigned to when the centroid has to be transferred?

For the first problem, we propose to use a ball centered at
a centroid with radius r to determine whether this centroid
should be excluded from the subset. With the first fact,
adjacent centroids should be assigned to different subsets.
Let ni be the number of the centroids in the i th subset
(i = 1, 2, . . . , m). Let xi j = (x1

i j , x2
i j ) be the j th centroid

in the i th subset, j = 1, 2, . . . , ni . Define a ball set i j =
{b⏐

⏐(b1− x1
i j )

2+ (b2− x2
i j )

2 ≤ r2} for xi j , where b = (b1, b2)
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Fig. 5. Centroids are distributed to seven subsets. (a) r-ball of centroid O
contains centroid A from the same subset. (b) Situation which meets the first
restriction but not the second one, namely r-ball of centroid O contains the
centroids from all subsets.

is a centroid inside the ball. A centroid xi j should be removed
only if the following two restrictions are satisfied:

1) the first restriction is {xiq } �= ∅, xiq ∈ i j and q �= j ;
2) the second restriction is |{x ′pq}| < m − 1, x ′pq ∈ i j

x ′pq = arg min
q
‖xi j − x pq‖ (14)

and p �= i .
The first restriction shows that some centroids that are from

the same subset as xi j fall into an r -ball of xi j . Therefore,
xi j is the candidate that should be removed so as to maintain
the space structure of the centroids in the i th subset, that is,
no more than two centroids from the same subset can coexist
in the r -ball. However, the second restriction guarantees that
at least one subset is available for xi j to be transferred to,
meanwhile the space structure of the centroids in this subset
is well maintained. Optimization problem of (14) obtains all
the centroids that are the nearest to xi j from other subsets.
The second restriction shows that these centroids are in the
r -ball of xi j . However, if all the subsets have the centroids (the
nearest one to xi j in each subset) in the r -ball of xi j , namely
{{x ′pq, p = 1, 2, . . . , m}⋃ xi j } ⊂ i j , it is not necessary
to transfer centroid xi j to another subset. Because, in such
a situation, two centroids of a subset will be in an r -ball.
Therefore, we need additional restriction |{x ′pq}| < m− 1 and
p �= i . In Fig. 5(a), seven subsets have been initialized. The
r -ball of centroid O contains centroid A that comes from the
same subset as centroid O. So centroid O is the candidate that
should be removed. In addition, subsets 1, 2, 4, and 6 have
the centroids in the r -ball of centroid O and not less than
three subsets have no centroid in the r -ball. Hence, centroid
O should be removed from subset 1. However, Fig. 5(b) shows
a situation which meets the first restriction but not the second
one. Therefore, in such a situation, centroid O should not be
removed.

For the second problem, based on the second fact, we need
to guarantee the motion of each subset comes from the whole
scene. Therefore, for the centroids in a subset, the within-class
distances should be maximized. We propose to assign centroid
xi j to the p′th subset with the condition, {x p,q}⋂i, j = ∅

p′ = arg max
p

min
q
‖xi, j − x p,q‖ (15)

Fig. 6. Concise demo of LBWCMD. (a) Original distribution of the centroids.
(b) We first initialize the states of the centroids. According to LBWCMD,
centroids A, B, C, and D become square, triangle, square, and triangle markers,
respectively, as shown in (c), (d), (e), and (f).

and p �= i . The formulas {x p,q}⋂i, j = ∅ and p �= i try
to exclude the existing subsets in which the centroids fall into
the r -ball of xi, j . To determine an optimal subset that the
selected centroid xi j should be assigned to, we consider
the remaining subsets which contain the centroids outside
the r -ball of xi, j . We rank these subsets in a descending
order based on the distances between xi, j and each subset.
The top ranking subset, namely the p′th subset, is the best
selection. The dashed lines in Fig. 5(a) show the nearest
distances between centroid O and other subsets. Among all
the nearest distances, the one between centroid O and centroid
D is the largest. Using the within-class maximum principle,
centroid O should be assigned to subset 3. The details of
the method are described in Algorithm 1. The proposed
LBWCMD method can assign successive frames to different
subsets by a lower-bound strategy which gives an approximate
solution to (8). Moreover, this method ensures that the spatial
distribution of each centroid subset meets (13) as much as
possible.

We now give a concise demo to demonstrate the main
steps of LBWCMD method. Fig. 6(a) shows several centroids
for division. Let m = 3, r = 2.5. According to step 1 of
LBWCMD, the i th centroid is assigned to the i th division,
i = 1, 2, . . . , m− 1, and the rest of the centroids are assigned
to the mth subset as shown in Fig. 6(b). Suppose that the
centroids with the square marker are from the first subset,
the ones with the triangle marker are from the second subset
and the ones with the circle marker are from the third subset.
According to steps 8–19 of Algorithm 1, centroid A is assigned
to the farthest subset outside r -bound of centroid A. As shown
by the dash line in Fig. 6(b), centroid A should be assigned
to the first subset. Then, we go through centroid B, C, and D
based on the same idea. Similarly, the division results are
shown in Fig. 6(c)–(f), respectively. Fig. 6(f) shows that the
proposed method not only separates adjacent centroids to
different subsets, but also enable each subset to maintain
almost the same spacial distribution as the original centroid
set.
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Algorithm 1 Lower Bound-Based Within-Class Maximum
Division (LBWCMD)

Input: X ∈ N
v×n , number of subsets m, lower bound r , initial

values for number of iterations u = 0, thresh T = 20, flag
b = 0, constant τ = 5
1: Initialization:

Nt (i)←
{

1 i = 1, 2, . . . , m − 1

n − (m − 1) i = m
,

L( j)←
{

j j = 1, 2, . . . , m − 1

m j = m, m + 1, . . . , n
.

2: while b equals to 0 and u < T do
3: for i = 1, 2, . . . , m do
4: if Nt (i) ≤ 1 then continue. end if
5: Extract samples with label i from X to obtain Yi .
6: NYi = Nt (i);
7: for j = 1, 2, . . . , NYi do
8: Extract the j th sample from Yi to obtain x j .
9: d = arg mindp

dp, s.t. dp = ‖x j − x p‖, p = 1, 2, . . . ,
NYi and p �= j.

10: if d ≤ r then
11: dc(k) = arg mindk

dk, s.t. dk = ‖x j − ykq‖, ykq is
the qth sample from the kth subset, k = 1, 2, . . . , m,
k �= i.

12: s =∑
k=1,2,...,i−1,i+1,...,m δ(r − dc(k)),

δ(x) =
{

1 x ≥ 0

0 x < 0
.

13: l = arg maxk dc(k), k = 1, 2, . . . , m and k �= i.
14: if s < m − 1 or |NYi − NYl | < τ then
15: Nt (i)← Nt (i)− 1.
16: L( j)← l.
17: Nt (l)← Nt (l)+ 1.
18: end if
19: end if
20: end for
21: end for
22: dg(k) = arg mindk

dk, dk = ‖ykp − ykq‖, ykj is the j th
sample from the kth subset, k = 1, 2, . . . , m,
p, q = 1, 2, . . . , Nt (k) and p �= q.

23: s =∑
k=1,2,...,m δ(dg(k)− r).

24: if s is equal to m then b = 1. end if
25: u ← u + 1.
26: end while
Output: Nt , L.

Using the proposed LBWCMD method, we can map the
corresponding frames to the division set Pi (i = 1, 2, . . . , m)
according to the already known centroid subsets.

V. AUGMENTED SET CONSTRUCTION

Although we have finished the construction of the basic
sets. It is not yet ready to carry on RPCA on these basic sets.

Algorithm 2 Augmented Set Construction (ASC)
Input: Basic set Xi , foreground set { f j }, and its
corresponding area s j , j = 1, 2, . . . , n, initial values for
α, Yi = ∅, i = 1, 2, . . . , m.
1. Sort { f j } based on s j in ascending order to obtain
{ fk j |sk1 ≤ sk2 ≤ . . . ≤ skn , j = 1, 2, . . . , n}.

2. Select the top �α × n frames to construct set M = { fk j },
j = 1, 2, . . . , �α × n.

3. for j = 1, 2, . . . , �α × n do
4. for i = 1, 2, . . . , m do
5. if fk j �∈ Xi then
6. Yi ← Yi

⋃{ fk j }.
7. end if
8. end for
9. end for
Output: Yi , i = 1, 2, . . . , m.

First, the scale of each basic set is much smaller than ever
before, which results in an insufficient number of frames
for the low-rank decomposition. Second, there are still more
possibilities for us to make full use of the motion pri-
ori knowledge. In this section, we propose to construct
an augmented set as a supplementation for each basic set.
To this end, the frames with a small quantity of motion
will be selected. Let s j be the area of the binary fore-
ground f j of the j th frame, j = 1, 2, . . . , n. Based on
s j , we sort the foreground in ascending order to obtain
{ fk j |sk1 ≤ sk2 ≤ . . . ≤ skn , j = 1, 2, . . . , n}, where the
top �α × n frames are selected to construct set M =
{ fk j | j = 1, 2, . . . , �α × n} that composed of the frames
with a small quantity of motion. Let Yi be the augmented
set which is corresponding to basic set Xi , i = 1, 2, . . . , m.
Yi includes the frames in M but not in Xi . Therefore, Yi acts as
a supplementation to the basic set. The details for constructing
the augmented sets are summarized in Algorithm 2.

Ultimately, we divide � into Z1, Z2, . . . , Zm , namely
� = ⋃

i=1,2,...,m Zi , where Zi = Xi
⋃

Yi . The full name of
the whole framework is Joint Video Frame Set Division and
RPCA-based background subtraction (JVFSD-RPCA) which
is described in Algorithm 3.

VI. PARAMETER TUNING OF α

The proposed LBWCMD consists of three parameters,
namely m, r , and α. m indicates the number of divisions of
video frame set. r describes the distance between the locations
of two people. We will consider the values of these two
parameters in the next section. For the third parameter α, it
reflects the number of frames with slight motion. The larger
the α is, the more these types of frames exist. Our rule for
setting the value of this parameter is as follows. Define a step
function

g(x) =
{

1, x < 0

0, x ≥ 0.
(16)

Let Area(F (i))/wh stand for the ratio of the foreground pixel
to all the pixels in the frame, where F (i) is the i th foreground
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Algorithm 3 Joint Video Frame Set Division and RPCA-Based
Background Subtraction (JVFSD-RPCA)

Input: n video frames I (k) ∈ N
h×w, number of partitions m,

lower bound r , initial values for α.
1. Use the proposed method in Section III to obtain centroid

set � which consists of the centroids of major moving
objects in all frames and set Q with nonmotion frames.

2. Put the centroids in � as column vectors of data matrix
X . Take X as input for Algorithm 1 (LBWCMD) to
assign the centroids to m divisions. Then we have
division set Pi , i = 1, 2, . . . , m.

3. Divide Q into m subsets Qi , i = 1, 2, . . . , m. Merge Pi

and Qi to obtain basic set, namely Xi = Pi
⋃

Qi . The
index of frames in Xi is {li j

⏐
⏐ j = 1, 2, . . . , |Xi |;

i = 1, 2, . . . , m}.
4. Use Algorithm 2 (ASC) to construct the augmented set

Yi and merge it with the basic set Xi to obtain the
group set Zi= Xi

⋃
Yi .

5. Run RPCA on each group set Zi to isolate the corresponding
background and foreground for each frame.

Output: Background set {Bli j } and foreground set
{Fli j }, j = 1, 2, . . . , |Xi |; i = 1, 2, . . . , m.

which is estimated by the method used in Section III.
Therefore, the ratio of the number of these types of frames
to n is

f (x) = 1

n

n∑

i=1

[

g

(
Area(F (i))

wh
− ε

)]

. (17)

Then, we define

α =
{

f (x), f (x) > δ

δ, f (x) ≤ δ.
(18)

It means that the proposed method pursues the frames with
slight motion as much as possible.

VII. EXPERIMENTAL RESULTS

In this section, two groups of experiments were used to eval-
uate the effectiveness of JVFSD-RPCA and a detailed com-
plexity analysis of the proposed method was given. Because
the LBWCMD method is the core of our method, in the first
group of experiment, we created four kinds of artificial point
sets to test the performance of LBWCMD. In the second group
of experiment, we compared JVFSD-RPCA with the state-
of-the-art subspace-based background subtraction methods,
including robust principle component analysis (RPCA) [19],
go decomposition (GoDec) [24], principle component analysis
(PCA) [17], and robust principle component analysis with
M-estimation (RPCA-ME) [18]. Moreover, we also compared
the proposed method with the statistic-based, classification-
based, and nonparametric methods, including Mahalanobis
distance (MD) [27], improved gaussian mixture model
(GMM) [28], self-organizing-based method (SOBS) [14], and
kernel density estimation (KDE) [10]. All the comparisons will
be conducted on real-world and public sequences.

Fig. 7. Artificial point sets for division. (a) Decentralized assembled
points. (b) Straight walking points. (c) Random walking points. (d) Uniformly
distributed points.

TABLE III

PARAMETER SETTING FOR THE POINT SET DIVISION

A. Experiments on Artificial Point Sets

For a certain point set, the proposed LBWCMD method
can maximize the within-class distances while maintaining the
spatial distribution in each subset. In this section, we created
four artificial point sets to validate it. The point sets include
the decentralized assembled points, straight walking points,
random walking points, and uniformly distributed points,
which are shown in Fig. 7(a)–(d). We also used the objective
function values of (11)–(13) to evaluate the performance of
LBWCMD.

The lower bound r plays an important role in LBWCMD.
It decides the minimum distance between the two points from
the same subset. If r is too small, the points cannot be assigned
to different subsets as much as possible. On the contrary, if
r is too big, there will be an unbalance number of the points
in the subsets. Therefore, a proper value of r should be used.
In this experiment, we used the parameters in Table III to
divide the point sets.

The division results are shown in Fig. 8. Obviously, the
adjacent points can be assigned to different subsets while
the spatial distribution of each subset is well maintained.
We can see some numerical results in Table IV. It shows
that the convex hull of each subset largely overlaps with that
of the original point set except for subset 4 of the random
walking point set. Because some of the points in the random
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Fig. 8. Results of LBWCMD on the point sets. The division results of
(a) decentralized points, (b) straight walking points, (c) random walking
points, and (d) uniformly distributed points.

TABLE IV

EFFECTIVENESS OF LBWCMD ON THE POINT SETS

walking point set are not well aligned. In addition to the global
similarity, the local similarity related to the point sets is well
obtained. A comprehensive evaluation of the effectiveness of
LBWCMD is shown in the last row in Table IV. The smaller
the objective function value of (13) is, the better subsets we
had obtained. Among all the objective function values, only
one of the uniformly distributed point set is the worst. The
main reason is that some badly aligned points are not well
handled. Nevertheless, it is concluded from the overall results
that the proposed method is feasible to make a good division
to the point sets.

B. Experiments on Video Data Sets

In this section, we conducted the experiments on 11 real-
world and public sequences. The sequences include three
challenging ones (Fighting and two Walking with occlu-
sion sequences) captured by ourselves (the corresponding
ground truths can be downloaded at http://www.yongxu.org/
lunwen.html), Intelligent room [29], three sequences (Water-
Surface, Meeting room, Switch light) from Li’s Data Set [37],

two sequences (Highway, Pedestrians) from Change Detection
Data Set [31], Dance bootstrapping from Competition data
set [32] and Pets 2006 S7 [25]. We compared JVFSD-RPCA
with RPCA [19], GoDec [24], PCA [17], RPCA-ME [18],
MD [27], SOBS [14], GMM [28], and KDE [10]. The source
codes of RPCA, GoDec, and RPCA-ME can be downloaded
at [33], [34], and [35], respectively. Oliver et al. [17] did not
provide the source code of PCA for background subtraction.
Hence, we implemented this code by ourselves. The source
codes of MD, SOBS, GMM, and KDE can be downloaded at
the website of BGSlibrary [36].

In these experiments, all the ground truths of the frames
were used to evaluate the performances of the methods. If the
detected regions are included in the ground truth, they are
true positive, otherwise they are false positive. We adopted
the similarity measurement used in [37] to evaluate the per-
formances of the methods. Let D be a detected region and G
be the ground truth on the corresponding frame. The similarity
measurement between D and G is defined as

S(D, G) = D
⋂

G

D
⋃

G
. (19)

If the detected foreground is exactly the same as the ground
truth, the similarity approaches to 1. On the contrary, if the
detected foreground has no overlap with the ground truth, the
similarity approaches to 0. Therefore, we can conveniently
evaluate the performance of JVFSD-RPCA and other methods
with similarity measurement (19).

1) Parameters Setting: For our method, three parameters
need to be determined, namely m, r , and α. We used m = 10
and r = 6 for all the sequences. α can be determined by
(18) with empirical values ε = 0.01 and δ = 0.05. For
RPCA, as mentioned in [19], the suggested value of λ is
1/(max(wh, n))1/2, where w and h are the width and height
of the frame. However, we discovered that the suggestion does
not work in our experiments. To this end, we multiplied λ by a
weight ρ so as to make a proper balance between the low-rank
and sparse components. Hence we obtained λ by

λ = ρ√
max(wh, n)

(20)

where ρ = 0.06. For GoDec, we set the rank of measurement
matrix to 2 and used the default values of the iteration
parameters in the algorithm. For RPCA-ME and PCA, the
number of principle components was set to 10. Because these
subspace-based methods are of the batch types for dealing with
the coming frames, we used every 300 frames to construct
the measurement matrix for background subtraction. After the
foreground had been extracted by the subspace-based methods,
a threshold of 25 was adopted to convert the results into binary
images. For the MD method, the sensitivity, noise variance,
and learning rate were set to 100, 150, and 30, respectively.
For SOBS method, the training sensitivity, learning rate in
training phase, and training steps were set to 245, 255, and 55
while the testing sensitivity and learning rate in testing phase
were set to 130 and 62, respectively. For the GMM method,
three Gaussian models were used and the learning rate was set
to 0.008. For KDE method, the window size was set to 100.
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TABLE V

AVERAGE SIMILARITIES (%) ON DIFFERENT SEQUENCES

Fig. 9. Comparison results on different sequences. First to sixth rows: Detection results on 221th frame of Fighting, 216th frame of Intelligent room, 1615th
frame of WaterSurface, 23857th frame of Meeting room, 1615th frame of Highway, and 338th frame of Dance bootstrapping sequences. First and second
columns: Original image and its ground truth. Third to eleventh columns: Results of JVFSD-RPCA, RPCA, GoDec, RPCA-ME, PCA, MD, SOBS, GMM,
and KDE, respectively.

2) Experiments on Different Environments: In this section,
we compared the performances of the aforementioned methods
on different environments including four indoor sequences
(Fighting, Intelligent room, Meeting room, and Dance boot-
strapping) and two outdoor sequences (WaterSurface and
Highway). The Fighting sequence was captured by ourselves
with the length of 300. We labeled the ground truths of the
frames on every 10 frames. The resolution with 352 × 288
was used for the experiment. The Intelligent room sequence
has a length of 300 and a resolution of 320 × 240. According
to [29], the frames range from 82 to 299 are provided
with ground truths when the person starts to walk into the
room. The WaterSurface and Meeting room sequences contain
dynamic backgrounds. The former is of the length of 633
and the latter is of the length of 2964. Both sequences
are in the resolution of 160 × 128. According to [37], for
each sequence, 20 ground truths are provided on the key
frames to evaluate the performances of the algorithms. The
Highway sequence has a length of 1700 and a resolution of
320 × 240. The ground truths are provided in the range of
470–1700. For the Dance bootstrapping sequence, it has a
length of 747 with the resolution of 384 × 240. All the ground
truths of the frames are provided. We ran nine algorithms
on six sequences. The results of the average similarities on

the sequences are shown in Table V. The results in bold
font highlight the highest average similarity among all the
methods on the same sequence. The proposed JVFSD-RPCA
outperforms other methods on four sequences. In another
two sequences, the competitiveness of our method is almost
the same as GoDec on Meeting room sequence and RPCA
on Dance bootstrapping sequence. Some examples of the
foreground extraction results are shown in Fig. 9. The second
column shows the ground truth of the corresponding frame.
Our result is shown in the third column. We can see that the
proposed method performs well on all the sequences. However,
some of the algorithms, like RPCA-ME, PCA, and GMM do
not work well on WaterSurface and Meeting room sequences.
RPCA works well on most of the sequences. However, if the
moving objects stay for a while in a fixed location of the scene,
RPCA cannot extract the entire foreground of the object. Differ
from RPCA, the proposed JVFSD-RPCA pursuits the sparsity
not only in space but also in time and exploits the frames with
slight motion to provide more genuine backgorund pixels for
low-rank decomposition. With these situations, JVFSD-RPCA
is much more competitive than RPCA. In the eighth and the
eleventh columns of Fig. 9, we can find that the MD method
is quite sensitive to noises and KDE cannot perform well on
Meeting room, Highway, and Dance bootstrapping.
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Fig. 10. Comparison results on strong lighting sequences. First to second rows: Detection results on 467th frame of Pedestrians and 2507th frame of
Switch light sequences. First and second columns: Original image and its ground truth. Third to eleventh columns: Results of JVFSD-RPCA, RPCA, GoDec,
RPCA-ME, PCA, MD, SOBS, GMM, and KDE, respectively.

TABLE VI

AVERAGE SIMILARITIES (%) ON STRONG LIGHTING SEQUENCES

Fig. 11. Comparison results on challenging sequences with serious occlusion. First to third rows: Detection results on 211th frame of Walking I, 171th frame
of Walking II, and 841th frame of Pets 2006 S7 sequences. First and second columns: Original image and its ground truth. Third to eleventh columns: Results
of JVFSD-RPCA, RPCA, GoDec, RPCA-ME, PCA, MD, SOBS, GMM, and KDE, respectively.

TABLE VII

AVERAGE SIMILARITIES (%) ON CHALLENGING SEQUENCES

3) Experiments on Strong Lighting Sequences: In this
section, we evaluated the algorithms under strong lighting situ-
ations. Two sequences were used for testing. One is an outdoor
Pedestrians sequence with strong lighting. The sequence has
a length of 1099 and a resolution of 360 × 240. The other is
an indoor Switch light sequence which first turns off the light
and then turns on the light causing strong lighting changes.
The sequence is with the length of 1546 and resolution of
160 × 128. Pedestrians sequence provides the ground truths
in the range of 300–1099 and Switch light sequence provides
20 ground truths of the key frames for performance evaluation
according to [37]. We performed all the algorithms on the
two sequences. The average similarities results are shown in
Table VI. Our method obtains better foreground extraction
results than the other methods. See the second row in Fig. 10,
RPCA-ME, PCA, SOBS, and GMM do not obtain good
results under the situation of Switch light. MD and KDE are
much more sensitive to lighting changes comparing with other
methods.

4) Experiments on Challenging Sequences With Serious
Occlusion: To further evaluate the performances of all the
algorithms, we used three challenging sequences for the exper-
iments. Two Walking with occlusion sequences were captured
by ourselves. Both sequences are of the length of 400 and
have a resolution of 352 × 288. We labeled the ground
truths on every 10 frames. The Walking I and Walking II
sequences are shown in the first and second rows of Fig. 11.
The third sequence is Pets 2006 S7 with a length of 1200 and a
resolution of 360× 288. This sequence is the most challenging
one among all the seven sequences in Pets 2006 Dataset. Many
people appear in the scene. Moreover, the occlusion between
the people happens quite often. Because no ground truths
of this sequence are provided, we labeled the ground truths
on every 10 frames and totally used 120 ground truths for
evaluation. The detailed testing results of all the methods on
Walking I, Walking II, and Pets 2006 S7 sequences are shown
in Figs. 12–14. It can be seen from three similarity curves
that JVFSD-RPCA outperforms other methods among most
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Fig. 12. Comparison results on Walking I.

Fig. 13. Comparison results on Walking II.

of the frames with ground truths. Walking II sequence has the
most serious occlusion phenomenon among three challenging
sequences. Even under such a situation, JVFSD-RPCA still
can obtain a satisfactory result. However, the performances of
other methods drop down as shown in Fig. 13. The average
similarities of all the algorithms on three sequences are listed
in Table VII which validate the effectiveness of JVFSD-RPCA
on challenging sequences with serious occlusion. More vivid
demonstration of the foreground extraction results can be seen
in Fig. 11.

We present the rational explanation of the experimental
results as follows. The subspace-based methods take all the
successive frames as adjacent column vectors of a matrix and
try to obtain the sparse component or outlier of this matrix.
It can be regarded as a global scheme for background subtrac-
tion. However, in the crowded sequence, the background does
not appear frequently owing to the highly dense walking flow.
The global scheme fails when it comes to this situation. Unlike
the global scheme, the JVFSD-RPCA considers the motion
priori knowledge, then the proposed LBWCMD method can
assign the successive frames to different subsets. Therefore,
the frames in each subset are not continuous, which means

Fig. 14. Comparison results on Pets 2006 S7.

TABLE VIII

FLOPS OF THE MAIN STEPS IN ALGORITHM 1

the measurement matrix is not only sparse in space but also
sparse in time. This can alleviate the influence of the highly
dense movement to some extent. In addition, we augmented
each subset by using the frames with a small quantity of
motion. This also can provide more genuine background pixels
and prompt good recovery results. For the other methods,
they usually need a training or learning phase to produce
suitable parameters to detect the foreground. However, good
parameters are very hard to obtain under the situation with
serious occlusion.

C. Complexity Analysis of the Proposed Method

The proposed method is summarized in Algorithm 3, which
consists of Algorithms 1 and 2. For Algorithm 1, the flops
of the main steps are listed in Table VIII, where n is the
number of samples, v is the dimension of a sample, m is the
number of subsets, NYi is the number of samples of the i th
subset in a certain while loop, and T is the maximum iteration
times within while loop. As the sample is the location of
moving object, v = 2. Taking all the steps into consideration,
the maximum complexity of Algorithm 1 is O(T mn2). For
Algorithm 2, the main complexity is produced in step 1
which consists of foreground pixel counting and foreground
area sorting. The former costs O(nwh) and the latter costs
O(n2), where h and w are, respectively, the height and
width of an image. However, in our problem, wh � n.
Therefore, The complexity of Algorithm 2 is O(nwh). For
Algorithm 3, the complexity of step 1 is easy to evaluate,
namely O(nwh). Steps 2 and 4 complexities are related to
Algorithms 1 and 2, which have been discussed above. The
complexity of step 3 is O(m). Finally, we execute step 5 to run
RPCA on each group set. The complexity of RPCA has been
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TABLE IX

AVERAGE EXECUTION TIMES (s) OF THE METHODS ON DIFFERENT SEQUENCES

discussed in [21], namely O(nwhmin(n, wh)). In summary,
the complexity of the proposed method is O(nwhmin(n, wh)).
For other subspace-based methods, the complexity of GoDec,
RPCA-ME and PCA is O(nwhr ) [24], O(nwhk) [18], and
O(n3) where r is the predefined low rank of measurement
matrix and k is the number of principle components of
measurement matrix, respectively.

As the proposed method is based on RPCA, the pre-
processing procedures have to be completed at first. Then
RPCA is conducted on each group set Zi (i = 1, 2, . . . , m)
to extract the foregrounds. Although the complexity of the
proposed method is of the same level as RPCA, the counting
flops of the proposed method are more than RPCA. With
the design of the proposed method as shown in Fig. 3(b),
the executions of RPCA on the group sets are independent
actually. Therefore, we can use parallel computing technique
to accelerate the speed of the proposed method. For the sake
of completeness, we compare the execution times of all the
methods on Windows XP system with 3.4 GHz CPU and
8 GB RAM. The experiments were run 10 times over different
sequences. The average execution times are listed in Table IX.
The results in bold font highlight the longest execution time
among all the methods on the same sequence. Obviously, the
efficiency of GoDec is the lowest among all the methods.
On the contrary, RPCA-ME holds the highest efficiency
among all the methods. The proposed method runs about
1.5 s slower than RPCA on average. Because the proposed
method has completed some optimization steps before RPCA,
JVFSD-RPCA costs a little more time in background subtrac-
tion. Even though JVFSD-RPCA costs more time, experiments
in 11 sequences show that our method is more competitive than
the other methods.

VIII. CONCLUSION

Unlike current subspace-based background subtraction
methods, we took advantage of the motion priori knowledge
and proposed a new JVFSD-RPCA method for background
subtraction. The coarse motion estimation in Section III pro-
vides us the locations of the objects and the ratios of the
foreground areas in the frames. With the centroids of the mov-
ing objects, we firstly developed LBWCMD method to divide
the video frame set into different subsets for alleviating the
influence of the highly dense movement. Then we constructed
an augmented set using the frames with a small quantity of
motion which facilitates us to obtain more genuine background
pixels in each subset. By integrating the preceding two phases,
we finally obtained the group sets, in which the moving objects
are uniformly located at random. The proposed method makes
the foreground pixels sparse not only in space but also in time.

Experiments on various challenging sequences validated the
competitiveness of the proposed method comparing with the
state-of-the-art background subtraction methods. The charac-
teristics of the proposed method can be concluded from the
experiments. First, LBWCMD can maintain the number of the
frames in each subset at the same level. This is very important
because the unbalanced scale of the subset will result in bad
background extraction results. Second, JVFSD-RPCA works
well in the situations of lighting changes or large size of
occlusion such as sequence Walking II. However, some of
the other methods fail in these situations. Third, the proposed
method is an improved version of RPCA and it concen-
trates on enhancing the effectiveness of foreground detection
results. Some optimization steps are completed before RPCA
which results in more counting flops than RPCA. To make
JVFSD-RPCA applicable, we can use the parallel computing
technique to accelerate the speed of the proposed method.
Experimental results in 11 sequences show that the proposed
method is more competitive than the other methods. In the
future, we will pay more attention to further improve the
efficiency of the algorithm.
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